

The focus of this paper is on operations in ideal topological spaces. We look at several categorizations of Hayashi–Samuel spaces, $\mu^* - W$ sets, and β –open sets of -topology. This study also discusses decomposition.

1. Introduction

 Today, the study of ideals in topological space is not a novel topic. It has been studied since the twentieth century and continues to be studied now. If a set $I \subseteq P(X)$ (power set of X) meets the finite multi-functionality, it is termed an ideal [1,3] on X. An ideal topological space (X, ρ) is a topological space with an ideal I on X. Two operators, "global function μ " [2] and "set operators μ^* " [7], were crucial in the study of ideal topological spaces. In this application, the global function of $S \subseteq X$ for the ideal topological space (X, ρ, I) is defined as: $S \mu(I)$ (or merely $S \mu$) { $x \in X : Q \cap S / \in I$, $Q \in \rho(X)$ }, where $\tau \rho(X) =$ ${Q \in \rho : x \in Q}$, while μ^* -operator equals $\mu^* \mu(S) = X \setminus S^c \mu$.

 These two operations were overly connected to the topological space's interior and closure operators. The interior of a set S (for short, I nt(S)) can be thought of as the approximate of an open set, whereas the closure of S (denoted as Cl(S)) can be thought of as the approximate of a closed set. Moreover, it is true that Int(S) \subseteq S \subseteq Cl(S). For just an ideal topological space (X, ρ, I) and S \subseteq X, S $\mu \subseteq$ Cl(S) and Int(S) $\subseteq \mu^*(S)$, the following holds. Nevertheless, $\mu^*(S) \nsubseteq S \nsubseteq S \mu^*$ and as a result of the ones that follow:

Take the topological space (ℝ, ρ_{U} , P(ℚ)),when ℝ represents the collection of reals, ρ_{U} represents the standard topology on R, and $P(\mathbb{Q})$ represents the power set of Q. Now let us assume $k \in \mathbb{Q}$. Then $\mu^*(\{k\}) = \mathbb{R}$ and $(\{k\})\mu^* = \emptyset$.

It's also worth noting that the value of a set obtained through to the joint operations of interior (resp. closure) and closure (resp. interior) is not the same as the value obtained through the joint operations of μ (resp. μ^*) and μ^* (resp. μ).

 As a result, studying collections in ideal topological spaces described by the operators and will also be fascinating. The sets presented by Modak in [3] and Modak and Bandyopadhyay in [2] are noteworthy in this regard. The terms μ -set and μ^* – W set are used to describe these kinds of sets. These collections aid in the discussion of the characteristics of α -topology of $\rho^*(I)$, where $\rho^*(I)$ [9,10] is a topology derived from (X, ρ, I) and it was one of the base is $B(I, \rho) = \{N \setminus I : N \in \rho, I \in I\}$ [8]. Dontchev et al, [5], Mukherjee et al, [4] presented extensions of topological spaces in terms of ideals while, Dontchev [6] refers to them as "Hayashi–Samuel" spaces.

In this study, we show that the α-topology can be described by the collection μ^* (X, ρ) This publication also includes more characteristics of the Hayashi–Samuel space. With μ -sets and μ^* – W sets, we build further links between the generalized open sets of topological space. For the $\mu^* - W$ set, we additionally prove a deconstruction theorem. We develop a function called -function and discuss compositions of different functions in this study.

Firstly, we provide the following definition:

 preopen (resp. Semi-open, semi-preopen regular open) refers to a subset S of a topological space (X, ρ). (α-open, δ-open, β-open [10]) set if $S \subseteq Int(Cl(S))$ (resp. $S \subseteq Cl(int(S), S \subseteq Cl(int(Cl(S)), S = S)$ Int(Cl(S))), S ⊆ Int(Cl(Int(S)), Int(Cl(S)) ⊆ Cl(Int(S)), S ⊆ Int(Cl(I nt(S)))).) denotes the set of all POX (resp. SOX, SPOX, ROX, αOX, βOX, δOX).

2. Properties of µ^{*} sets

Firstly, we give the definition of the μ^* -set, and so talk about the Hayashi–Samuel space. **Definition 2.1**.

Let (X, ρ, I) be an ideal topological space and $S \subseteq X$, then S is a μ^* (resp. $\mu^* - W$ set if $S \subseteq (\mu^*(S))$ (resp. $S \subseteq Cl(u(S))$).

 μ^* (X, ρ) (resp. μ (X, ρ)) represents a set of all μ^* (resp. μ^* – W sets) in (X, ρ, I).

 $\mu^* : (X, \rho, I) \to K(\rho)$ (set of all closed sets in (X, ρ)) is a predefined operator defined by $\mu^* S =$ $((\mu(S))^*$ and $S \subseteq X$.

Proposition 2.2.

Let (X, ρ, I) satisfies a Hayashi–Samuel space. Then

(1) $S \in \mu^*(X)$, $S \in \text{ROX}$.

(2) $S \in \mu^*(X)$, For $S \in \mu(X, \rho)$.

(3) $S \in \mu^*(X)$ where, $S \in P$ OX and $S \in \delta OX$.

Proof. (1) Assume S is regular open. So S = Int(Cl(S)) $\subseteq \mu(\text{Int}(\text{Cl}(\mu(S)))) \subseteq \mu(S) \subseteq ((\mu(S))^*$. Therefore, $S \in \mu^*(X)$ because, $\mu(S)$ is open and Hayashi–Samuel

(2) Put $S \in \mu(X, \rho)$. Then $S \subseteq Cl(\mu(S)) \subseteq (\mu(S))^*$. Therefore, $S \in \mu^*(X)$, because $\mu(S)$ is open and Hayashi– Samuel. Thus $A \in \Psi^*$ (X).

(3) Put $S \in P$ OX and $S \in \delta OX$. So, $S \subseteq \text{Int}(\text{Cl}(S)) \subseteq \text{Cl}(\text{Int}(S))$. So $S \subseteq \text{Cl}(\mu(\text{Int}(S)))$

Therefore, $S \subseteq Cl(\mu(S)) \subseteq (\mu(S))^*$, because S is a δ set and Hayashi-Samuel.

Following example shows that μ^* -set need not be a semi-open in general.

The following example demonstrates that μ^* -set does not have to be δOX in general.

Example 2.3.

Let $X = \{m, n, o\}$, $\rho = \{\emptyset, \{m, o\}, X\}$ and $I = \{\emptyset, \{o\}\}\$. Then $\{m\}$ is μ^* -set but not δOX . **Proposition 2.4.**

Let (X, ρ, I) an ideal topological space, where $I = I_k$, then $\mu^* (X, \rho) = POX$.

Proof. To prove $\mu^* (X, \rho) \subseteq PO(X)$. Let $S \in \mu^* (X, \rho)$. So, $S \subseteq (\mu(S))^* \subseteq$

 $Cl \Big(Int \Big(Cl \Big(Int(CI(S)) \Big) \Big) = Int(Cl(S)).$ Thus, $S \in POX$.

Proposition 2.5.

Let (X, ρ, I) an ideal topological space, where $I = I_k$, then $\mu^* (X, \rho) = \beta OX$.

Proof. It is obvious.

Proposition 2.6. Let (X, ρ, I) be an ideal topological space. Then $\mu^*(X, \rho) \subseteq \mu(X, \rho)$ **Proof**.

Let
$$
S \in \mu^*(X, \rho)
$$
. So, $S \subseteq (\mu(S))^* \subseteq Cl(\mu(S))$. Hence, $S \in \mu(X, \rho)$.

The converse of the preceding theorem is false, as shown by the following example:

Example 2.7. Let $X = \{m, n, o, k\}$, $\rho = \{\emptyset, \{m\}, \{n, o\}, \{m, n, o\}, X\}$ and $I = \{\emptyset, \{m\}\}$. Let $S =$ ${m, k}$. So, $\mu({m, k}) = X \ (m, k)^* = X \ (n, o)^* = X \ (n, o, k) = {m}$. Now $({m})^* = \emptyset$. So, Cl({m}) = {m, k}. Hence {m, k} $\notin \mu^*(X, \rho)$ and {m, k} $\in \mu(X, \rho)$.

Proposition 2.8.

A space (X, ρ, I) is Hayashi–Samuel iff $\mu^*(X, \rho) = \mu(X, \rho)$.

Proof. Assume that $\mu^*(X, \rho) = \mu(X, \rho)$. To prove, (X, ρ, I) is Hayashi–Samuel. Since X is open in $(X, \rho), X \in \mu(X, \rho)$. Thus, $X \subseteq (\mu(X))^*$, and so $X \subseteq X^*$. Therefore, $X = X^*$, and (X, ρ, I) is Hayashi-Samuel.

Proposition 2.9.

Let (X, ρ, I) be a Hayashi–Samuel space. Then $S \in \mu^*(X, \rho)$ iff $S \in \beta O(X)$ and $S \in W(\rho)$. **Proof**. Let $S \in \mu^*(X, \rho)$. Then $S \subseteq (\mu(S))^* = [Cl(\mu(S))]^* \subseteq Cl(Int(Cl(A))).$ Thus, $S \in \mathcal{S}$ $\beta O(X)$ and $S \in W(\rho)$, because the space is Hayashi– Samuel.

Vise versa, Assume that $S \in \beta O(X)$ and $S \in W(\rho)$. Hence, $S \subseteq Cl(\text{Int}(Cl(S))) \subseteq$ Cl[μ (Int(Cl(S))) \subseteq [μ (Int(Cl(S)))]^{*} \subseteq [μ (Cl(S))]^{*} = [μ (S)]^{*}. Therefore, S $\in \mu^*(X, \rho)$. **Proposition 2.10**. Let (X, ρ, I) be a Hayashi-Samuel space. Then $Cl^*(O)$ $= Cl(0) \forall 0 \in \rho^* (I).$

Proof. Let (X, ρ, I) be a Hayashi– Samuel space, $0 \subseteq 0^*$ $0 \in \rho^*$ (I), so $Cl(0) \subseteq Cl(0^*) \subseteq 0^*$. Thus, $Cl(O) \cup O \subseteq Cl^*(O)$. Therefore, $Cl(O) \subseteq Cl^*(O)$.

3- Conclusion:

Operations in ideal topological spaces have been studied in several classifications of Hayashi–Samuel spaces, $\mu^* - W$ set, and β -open set from topology and some properties of $\mu^*(X, \rho)$.

\mathscr{L} On μ and $\mu^{\wedge*}$ Operators in Ideals Topological Spaces **On μ and μ^* Operators in Ideals Topological Spaces**

[1] S. Modak, Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci. India A 82 (3) (2012) 233–243.

[2] S. Modak, C. Bandyopadhyay, A note on ψ - operator, Bull. Malyas. Math. Sci. Soc. 30 (1) (2007) 43– 48.

[3] S. Modak, T. Noiri, Connectedness of ideal topological spaces, Filomat 29 (4) (2015) 661–665.

[4] M.N. Mukherjee, B. Roy, R. Sen, On extensions of topological spaces in terms of ideals, Topology Appl. 154 (2007) 3167–3172.

[5] J. Dontchev, M. Ganster, D. Rose, Ideal resolvability, Topology Appl. 93 (1999) 1–16.

[6] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, arXiv:math.Gn/9901017v1 [math.GN], 5 Jan 1999.

[7] C. Bandhopadhya, S. Modak, A new topology via ψ-operator, Proc. Nat. Acad. Sci. India 76(A), IV (2006) 317–320.

[8] E. Ekici, T. Noiri, Connectedness in ideal topological sapces, Novi Sad J. Math. 38 (2008) 65–70.

[9] N. Sathiyasundari, V. Renukadevi, Note on *-connected ideal spaces, Novi Sad J. Math. 42 (2012) 15– 20.

[10] T.H. Yalvac, Relations between some topologies, Mat. Vesnik 59 (2007) 85–95

