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Abstract. The modelling of Human motion is critical in several fields such as computer graphics, vision and virtual reality, with applications of 

interaction between human and computer, synthesizing motions, and motion generation for virtual reality. In this work the CNN-VAE and RNN-

MDN models have been used for modelling the human motions by learning time-dependent representations to obtain short-term motion prediction 

and long-term human motion synthesis. The new generated human motion video achieved good quality. This proposed system has been 

implemented on the KTH dataset and Weizmann dataset to generate the boxing and waving motions. 

Keywords: Variational Autoencoder (VAE), Convolution Neural Network (CNN), Mixture Density Network (MDN), Wavelet Transform (WT). 

1 Introduction 
Natural human motion modeling is a hot topic in a variety of fields, including computer animation, biomechanics, virtual reality, 

and others, where high-quality motion data is required. Despite motion capture systems' better accuracy and decreased costs, it is 

still highly desirable to make maximum use of existing data to generate diverse new data. One of the most difficult aspects of 

motion production is dynamics modeling, where it has been demonstrated that due to the great coordination of body motions, a 

latent space can be discovered [1, 2, 3]. However, despite the fact that the spatial component is being researched, dynamics 

modeling, particularly with the goal of diverse motion creation, remains an unsolved challenge [4].  

The goal of human motion video generation is to create high-fidelity future frames by learning dynamic visual elements from 

video. Because the model may have to learn to separate a number of effects based on dynamic visual properties, such as how 

objects move and distort over time, how sceneries change as the camera moves, and how the background changes, it's an excellent 

method for learning video representations [5, 6]. 

Researchers have recently focused on using deep recurrent neural networks (RNNs) to model human motion, with the goal of 

learning time-dependent representations that perform tasks such as predicting short-term human motions and combining long-term 

human motions, based on the success of deep learning techniques in a variety of computer vision tasks [7,8] 

One of the deep neural network methods which has been used in this paper is convolutional neural network with variational auto 

encoder (CNN-VAE) model and MDN-RNN (LSTM) model. In this paper the wavelet transform has been used with CNN-VAE 

model to analyze the input data to multi Structure scales and to make the time of training and testing faster and MDN with RNN 

have been used for predicting the new distributed latent vairables to generate new video. 

2 Related Work 
Below are some related works clarify some methods used for generating the human motion. 

K. Fragkiadaki et al., in 2015 [9], they proposed a model of Encoder-Recurrent-Decoder (ERD) to recognize and predict the 

position of human body in video and in motion capture. The human motion temporal dynamic learned by a long short term memory 

(LSTM) model. They constructed a nonlinear transformation to encode the features of human pose and decode the LSTM output. 

They tested representations of ERD architectures to generate motion capture (mocap), labeling pose of body and predicted it in 

video. They tested this model on the dataset named H3.6M, which is consider largest dataset for video pose. P. Ghosh et al., in 

2017 [10], Proposed a modern framework to learn the models of spatio-temporal motion prediction from data only. This approach, 

known as the Dropout Autoencoder LSTM (DAELSTM), will synthesize natural sequences of motion over long-term horizons1 

without drastic drift or loss of motion. This Dropout Autoencoder (DAE) then is used by a 3-layer LSTM network to filter each 

expected pose, reducing the accumulation of associated errors and, subsequently, drifted over time. R. Villegas et al., in 2017 [11], 

proposed a deep neural network to predict future frames of realistic video sequences. To solve complicated development of pixels 

in video, they proposed decomposing motion and content, two main components producing dynamics in video. This model built 

for pixel level forecasting by the Encoder-Decoder Convolutional Neural Network and Convolutional LSTM, which separately 

identify the spatial structure of an image and the associated temporal dynamics. Trying to predict the next frame by separately 

modeling motion and content decreases the conversion the extracted features of content to the next frame content by the motion 

features defined, which simplifies the prediction job. They evaluated the proposed system on videos of human motion, using KTH, 

Weizmann action, and UCF-101 datasets. C. Li et al., in 2018 [12], they presented a new approach built on convolutional neural 

networks (CNN) for modelling human motion. The encoder of the long-term and encoder of the short-term have the same 

architecture, i.e. the CEM, which consist of three convolution layers and one fully connected layer. For each convolution layer the 

number of feature maps was 64, 128 and 128, and for fully connected layer the number of the output nodes was 512.  A stride 

number for each convolution layer is set 2 to capture the long term correlations and enhance the accuracy of prediction. So they 

suggested a model of convolutional sequence-to sequence to predict human motions. They adjusted 2 types of convolutional 

encoders, the encoder of long-term and encoder of short-term, so that the information of the both distant and temporal motion used 

to predict the future. In the long term prediction this model outperform on state-of-the-art RNN models, in the testing, they used 2 

datasets: the dataset named Human 3.6M and dataset named Motion Capture CMU. Y. Li et al., in 2018 [13], proposed a 

conditional variational autoencoder (cVAE) dependent on probabilistic models, for modeling the uncertainty. There are two unique 

attributes of their probabilistic model. Firstly, this model is a 3D-cVAE, i.e. the autoencoder is built in an architecture of 

spatialtemporal convolutions used to predict consecutive optical flows. Secondly, is the method of frame generation named the 

Flow2rgb model, the model will "imagine" the existence of the next frame by flow and start frame. A spatial temporal correlations 

and future uncertainty have been modelling in a 3D-cVAE model. For evaluating the model they testing their algorithm on 3 

datasets. The KTH dataset, and 2 datasets the Waving Flag and Floating Cloud which collected form website. These 2 datasets 

represent dynamic texture videos. A. Augello, et. al., 2017 [14]. Proposed a approach of deep learning to introduce a computational 

creativity behavior in a dancing robot. They used the variational autoencoder for converting the input to latent representation. The 

generation has been achieved by injecting the representations of the listened music into the encoder network's latent space. This 

method applied on a set of movements captured from various skilled dancer. As a result, the robot can improvise dancing 

movements based on the music being played, even if it has never been done before.  

3 Transform Coding 
The wavelet transform has been used in this work to transform the frame of video from spatial domain to frequency domain and 

the result will image decomposed into four subbands (LL, LH,HL and HH). This is done by applied the haar wavelet transform 

equations. 
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a) Forward Haar Wavelet Transform (FHWT) 
Given an input sequence (xi) i=0…N-1, it is FHWT produce (Li) i=0…N/2-1 and (Hi) i=0…N/2-1 by using the following transform 

equations [14]: 

1. If N is even 

𝐿(𝑖) =
𝑥(2𝑖) + 𝑥(2𝑖 + 1)

√2
     , 𝑖 = 0 … (

𝑁

2
) − 1   

𝐻(𝑖) =
𝑥(2𝑖) − 𝑥(2𝑖 + 1)

√2
     , 𝑖 = 0 … (

𝑁

2
) − 1 

2. If N is odd 

𝐿(𝑖) =
𝑥(2𝑖) + 𝑥(2𝑖 + 1)

√2
     , 𝑖 = 0 … (

𝑁 − 1

2
)   

𝐻(𝑖) =
𝑥(2𝑖) − 𝑥(2𝑖 + 1)

√2
     , 𝑖 = 0 … (

𝑁 − 1

2
) 

𝐿 (
𝑁 + 1

2
) = 𝑥(𝑁 − 1)√2 

𝐻 (
𝑁 + 1

2
) = 0 

b) Inverse Haar Wavelet Transform (IHWT) 

The inverse one-dimensional HWT is simply the inverse to those applied in the FHWT; the IHWT 

equations are [15]: 

 

1. If N is even 

𝑥(2𝑖) =
𝐿(𝑖)+𝐻(𝑖)

√2
     , 𝑖 = 0 …

𝑁

2
− 1   

𝑥(2𝑖 + 1) =
𝐿(𝑖) − 𝐻(𝑖)

√2
     , 𝑖 = 0 …

𝑁

2
− 1 

 

 

2. If N is odd 

𝑥(2𝑖) =
𝐿(𝑖) + 𝐻(𝑖)

√2
     , 𝑖 = 0 …

(𝑁 − 1)

2
 

𝑥(2𝑖 + 1) =
𝐿(𝑖) − 𝐻(𝑖)

√2
     , 𝑖 = 0 …

(𝑁 − 1)

2
 

𝑥(𝑁 − 1) = 𝐿 (
𝑁 + 1

2
) √2 

4 Convolution Neural Network (CNN) 
CNN consider, for deep learning, a very popular model which are specifically suitable with images as inputs, but in the same time 

they are often used in other tasks such as text, signals and other continual responds. The main difference between the CNN and 

NN is the CNN received image as input while the NN input is numerical value (e.g. a feature vector). There are three main layers 

included in CNN which are convolutional layers, subsampling layers (pooling layers),  and finally fully-connected layers [16, 17, 

18]. 

5 Variational Autoencoder (VAE) 
Autoencoders have sparked a lot of attention. Because this technique can do data compression in lossy begining from a specific 

database,   Once trained, they represented all previously exposed data in the hidden layer; their presentation is "lossy" since the 

produced x didnot not completely similar to the original, with the differences specified by the distance or "error" function. 

Compression and prediction are closely related fields, as shown in [19], and compressors could be employed to produce new data. 

The ability of VAE, first presented in [20], to generate a variation of learning input data. 

The compression and prediction, as it shown in [19], are closely related fields, and new data can also be produce by using the 

compressors. Variational autoencoders, that introduced firstly in [20], have a strong interest for their capabilities to generate a 

variation of the input data learning. The input data can be represented by the capability of the most interesting features which 

autonomously draw the boundaries of the compressed space. Given input data x and calling p(x) the probability distribution of 

 (1) 

 (2) 

(3) 

   (4) 
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the data, the latent variable z has been learning with its probability density p(z) so the data has been generated when the value of 

z are varied:  

𝑝(𝑥) = 𝑍𝑝(𝑥|𝑧) 𝑝(𝑧)                  (5) 

To estimate the distribution p(x|z), the variational autoencoder training is depended on the variational inference which is often 

used with Bayesian method when there is a desire to deduce a posterior that is hard in computation. To reduce the Kullback-

Leibler divergence between two distributions a simpler distribution qλ(z|x) has been selected . A family of distributions is referred 

to as a variational parameter λ, which in the case of a Gaussian family would represent mean and variance. The divergence is 

computed in equation (6) . 

𝐷𝐾𝐿(𝑞𝜆(𝑧|𝑥)‖𝑝(𝑧|𝑥)) = 𝐸𝑞[𝑙𝑜𝑔𝑞𝜆(𝑧|𝑥)𝑝(𝑥) 𝑝(𝑥, 𝑧)]        (6) 

It can be demonstrated that:  

log(𝑝(𝑥)) = 𝐿𝑣 + 𝐷𝐾𝐿(𝑞𝜆(𝑧|𝑥)‖𝑝(𝑧|𝑥))              (7) 

Since, to reduce the log(p(x)) it is sufficient to reduce Lv. This value can be computed in equation (8): 

𝐿𝑣 = −𝐷𝐾𝐿(𝑞(𝑧|𝑥)‖𝑝(𝑧)) + 𝐸𝑞(𝑧|𝑥) log(𝑝(𝑥|𝑧))             (8) 

The distribution of p(z) as similar as possible to q(z|x), where the first term (DKL(q(z|x)||p(z)) is refers to regularization part, 

whereas the second part Eq(z|x)log(p(x|z)) put into consideration a suitable reconstructing of the values of x. After the training 

stage objected to minimize the value of log(p(x)), This is the same as saying "maximize the likelihood." As a result, the zeta 

values indicate the optimal compression for the input values, and the variance in the z space corresponds to a variation in the 

input sample construction. [14] 

 

 

 

 

 

 

 

 

6  Long Short Term Memory 

(LSTM) 
It is very difficult to train the Standard RNNs in a stable way (concerned to the problems of vanishing/exploding gradient) so 

that a Long Short-Term Memory (LSTM) type of RNN is used. Long training runs keep LSTMs stable, and they can be layered 

to construct deeper networks without losing their stability [21]. Unlike a traditional RNN, which uses basic recurrent neurons, 

an LSTM's central unit is a memory cell that maintains a state across time and is controlled by gates that regulate signal flow in 

and out of the cell. . Because the signal flow is precisely controlled, the risk of overloading or extinguishing the cell through 

positive or negative feedback is reduced. The relationships in an LSTM cell are shown in the following equations (see figure 2) 

[22]: 

Fig 1 : Example of the difference in latent space density between an autoencoder and a variational 

autoencoder, trained on the MNIST dataset  [ [20]. 
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The memory cell c works as the major innovation of LSTMt, which essentially represents as an accumulator of the state 

information, and numerous self-parameterized controlling gates update it. If the input gate is engaged when a fresh 

input xt reached at time t, its information will be gathered in the memory cell. Also, if the forgotten gate ft is on, the previous 

cell ct−1 may be forgotten throughout this operation. The output gate ot controls whether the most recent cell output ct is 

transferred to the last state ht. All gates it, ft, ot, memory cell ct, and hidden state ht are nstate ×1 vectors with the same 

dimension. The hidden state h0 and memory cell c0 are all set to zero vector 0 at time 0.  The forward pass of the LSTM is 

executed at time step t (t = 1,2,...,T), given ht−1,ct−1 from the last time step t−1  and current input xt, by first calculating 

the modified memory cell ct᷃:    

𝑐�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐)                (9) 

The an input gate it is established to regulate how much information in cell ct᷃ should be flowed into new memory and a 

forgotten gate ft is also created to regulate how much information from a previous memory cell ct−1 must be remembered: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖)             (10) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓)             (11) 

𝑐𝑡 = 𝑖𝑡°𝑐�̃� + 𝑓𝑡°𝑐𝑡−1                                    (12) 

Lastly, the output gate ot is used to verify what part of the memory cell ct must be sent to the 

hidden state ht:   

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏𝑜)             (13) 

ℎ𝑡 = 𝑜𝑡°𝑡𝑎𝑛ℎ(𝑐𝑡)                                         (14) 

The symbol ° represent the element wise multiplication of the vectors. 

The gradient will be trapped in the cell and maintained from fading too soon that is a common problem in RNN, which is one 

advantage of using the memory cells and gates to administrate the flowing information. Fully Connected LSTM (FC-LSTM) is 

another name for this multi-variate input version of LSTM [23].  

7 Mixture Density Network (MDN) 
MDN is a technique that has been successfully used to a variety of applications, including robotic arm control [24], handwriting 

generating [25], and now human motion generation. We output a probability density function for each dimension in the tensor 

rather than simply a single location tensor. The LSTM provides a layer of linear output units that act as parameters for a mixture 

model defined as the probability of a target t given an input x as in equation (15) [22]:  

𝑃(𝑡|𝑥) = ∑ 𝜋𝑘(𝑥)𝑁(𝑡|𝜇𝑘(𝑥), 𝜎2

𝐾

𝑘=1

(𝑥))                 (15) 

 Where K refers to number of components in the mixture, and π is the mixing coefficients as a function of the inputs (x), means 

(μ) is component location, and standard deviations (σ) is component width. The height of each curve is a weight (π). The number 

Fig 2. : LSTM Neuron [22]  
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of mixture components, K, is arbitrary and can be considered of as the number of diverse options available to the network at each 

time step [22].  

8 The Proposed System 
In the proposed system CNN-VAE model and LSTM model have been used to learn the representation of the input subband  frames 

(LL) which acts the human motions such as (walking, boxing and waving). CNN-VAE model including cnn-encoder and cnn-

decoder. The encoder receive the features from cnn and representing as latent variables by compute the variance (σ) and mean 

(µ) values and used in sampling operation using equation (16). 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =  µ + 𝑒𝑥𝑝(0.5 ∗ 𝜎) ∗ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛          (16) 

Where epsilon is random normal [0,1]. 

These latent variables have been learned by an encoder. The decoder part is the opposite of the encoder, where the sampled point 

is entered as input to the dense layer (fully connected) for decoding the values and the output of this layer will enter as input to 

the convolution layers. The result (Y) is compared with input image (X) and compute the loss value by using equation (8) , the 

kullback divergence value has computed by equation (6). These steps repeated until reach to minimum loss value. The weights 

have been saved in file (vae-weights.h5).  

CNN-VAE model has been illustrated in figure 3. This model consist of two phases, training and prediction phases. 

 

Figure 3. - The Structure of proposed CNN-VAE Model 

 

Fig 3. : CNN-VAE model 
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In the proposed system the process of generation is based on CNN-VAE model and on LSTM model. CNN_VAE 

model used to extract features and encoding it, after that the LSTM model has been used for training the encoding 

data (compressed data) to generate new frames. Figure. 4.  Show the LSTM –MDN for training.  

 

8.1 The Training System 

In the proposed system there are two training: training the CNN-VAE model and training the LSTM-MDN model. In 

the training CNN-VAE model the CNN-VAE encoder includes three convolutions layers with different number of filters (32, 

64 and 128) and filter size 3×3. The number of max pooling layers are three and two dense layers (fully connected layer) 

with number of nodes 128. The activation function which has been used with each convolution layer is Relu. in the CNN-

VAE decoder the number of convolution layers are four with three upsampling layers and two dense layers, sigmoid activation 

function used in the last convolution layer.  

In the LSTM training the input to this model is encoded representation which stored in file and three LSTM-MDN 

layers have been used in the training, each layer have 512 nodes, MDN layer have 24 components and after each layer the 

coefficients have been dropout. The output of lstm entered as input to the fully connected with number of nodes 1000. The 

error value between the input (Z) and output (Z ') has been computed by MSE measure. The weights of this network has been 

stored in file (lstm-weight.h5). 

8.2 The Testing (generation) System In the testing or generation phase the future frames have been 

generated by using the weights of cnn-vae model and weights of lstm-mdn model.In the process of 

Fig 4: LSTM-MDN Structure for Training 
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generation as in figure. 5. The input frame will transformed from spatial domain to frequency domain by 

using haar wavelet transform (1 and 2) and normalized, the coefficients will be encoded and predicted 

LSTM-MDN model, the result will be the new predicted encoded samples these samples have been 

decoded by using CNN-VAE decoder and the same result will back to LSTM model as input to predict 

the next encoded samples. The CNN-VAE decoder produced new reconstructed image this image has 

been normalized to original range. The result image represent the LL band from the original image. Each 

of remaining bands (LH, HL and HH) have been training and predicted as the same steps which the LL 

band has been trained and predicted.  All reconstructed bands (LL, LH, HL and HH) have been 

concatenated to produce the new image. This new image enter to the inverse wavelet transform using 

equations (3 and 4) to produce the new frame, these new frames have been converted to a video. 

 

9 The Experiments Results 

In this paper the experiments have been implemented on two datasets Weizmann and KTH datasets. The 

motions which have been generated are waving and boxing.Below are the datasets which have been used 

in this work.KTH dataset: This is includes 6 types of actions (boxing, hand clapping, hand waving, jogging, 

running and walking). This dataset contain on 599 action videos, these are taken by 25 various subjects 

with 4 scenarios (outdoors, outdoors with scale variations, outdoors with various cloths and indoors) [26, 

27, 28]. This dataset is download from the website in reference. 

Weizmann dataset:  This dataset consists of 10 classes of actions like "walking", "jogging", "waving" taken 

by 9 separate individuals to get a sum of 90 video clips. The video is shot with a static camera under a 

simple background [15], [29]. This database is downloaded from the website in reference [30]. 

In this paper the wavelet transform has been implemented to transform the image from spatial domain to 

frequency domain the results of this implementation are show in figure. 6: 

In this paper the experiments have been implemented on the subbands of transformed images in KTH dataset to generate new 

frames for boxing motion and implemented on Weizmann dataset to generate waving motion by using the proposed system. 

The PSNR, MSE and similarity SSIM measures have been computed to measure the quality of new frames. Table 1. Show the 

quality measures, number of generated frames and time of each generated video measured in millisecond (ms). In this work we 

used 10 frames per second. 
 

TABLE 1: THE MEASURES VALUES OF QUALITY FRAMES FOR THREE VIDEOS OF WEIZMANN DATASET OF (WAVING ACTION) 

 

Fig 5: - The Structure of the proposed Generation Phase. 

Fig 6: (a) Weizmann dataset for waving motion; (b) KTH dataset for boxing motion. 
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The accuracy and loss value of CNN-VAE model training with number of epochs and batch size have been illustrated in Table 

3 and in figure 7 and 8, the PSNR values for the two datasets have been illustrated in figure 9, figurer 10. Show the 

quantitative comparison between the ground truth (original) frames and our proposed model while figure 11 display the 

qualitative comparison between out model with others. 

Dataset Motio

n 

Video  No. of 

generate

d Frames 

MSE PSNR SSIM Tim

e of 

video 

10 

frame/s 

Weizman

n 

Wavin
g 

Perso
n 1 

25 Max=8.17 
Min=4.03 

Ave=5.86 

Max=42.0
8 

Min=39.01 

Ave=40.49 

Max=0.98
7 

Min=0.982 

Ave=0.984 

2500 
ms 

Weizman

n 

Wavin
g 

Perso
n 2 

15 Max=12.7
2 

Min=4.84 
Ave=6.60 

Max=41.2
8 

Min=37.09 
Ave=40.10 

Max=0.98
5 

Min=0.973 
Ave=0.981 

1500 
ms 

Weizman

n 

Wavin

g 

Perso

n 3 

16 Max=13.7

2 

Min=5.41 
Ave=7.98 

Max=40.8

0 

Min=36.76 
Ave=39.53 

Max=0.98

2 

Min=0.973 
Ave=0.978 

1600 

ms 

Weizman

n 

Wavin

g 

Perso

n 4 

21 Max=9.51 

Min=6.20 
Ave=7.28 

Max=40.2

1 
Min=38.35 

Ave=39.14 

Max=0.98

3 
Min=0.979 

Ave=0.981 

2100 

ms 

Weizman

n 

Wavin

g 

Perso

n 5 

36 Max=13.0

3 
Min=4.91 

Ave=6.12 

Max=41.2

2 
Min=36.98 

Ave=40.34 

Max=0.98

5 
Min=0.969 

Ave=0.982 

3600 

ms 

Weizman

n 

Wavin
g 

Perso
n 6 

25 Max=7.14 
Min=4.65 

Ave=5.77 

Max=41.4
5 

Min=39.60 

Ave=40.54 

Max=0.98
5 

Min=0.979 

Ave=0.983 

2500 
ms 

Weizman

n 

Wavin
g 

Perso
n 7 

17 Max=9.38 
Min=6.49 

Ave=7.10 

Max=40.0
1 

Min=38.41 

Ave=39.43 

Max=0.98
5 

Min=0.977 

Ave=0.979 

1700 
ms 

Weizman

n 

Wavin

g 

Perso

n 8 

18 Max=11.1

5 

Min=5.41 
Ave=7.49 

Max=40.8

0 

Min=37.66 
Ave=39.45 

Max=0.98

6 

Min=0.980 
Ave=0.983 

1800 

ms 

Dataset Motion Video  No. of 

generated 

Frames 

MSE PSNR SSIM Time 

of video 

KTH Boxing Person 

1 

20 Max=26.33 

Min=6.56 
Ave=12.41 

Max=39.96 

Min=33.94 
Ave=37.44 

Max=0.987 

Min=0.974 
Ave=0.986 

2000 

ms 

KTH Boxing Person 

4 

20 Max=59.91 

Min=6.28 
Ave=13.89 

Max=40.15 

Min=30.36 
Ave=37.66 

Max=0.991 

Min=0.975 
Ave=0.987 

2000 

ms 

KTH Boxing Person 

7 

20 Max=28.33 

Min=6.9 

Ave=10.64 

Max=40.21 

Min=33.6 

Ave=38.19 

Max=0.981 

Min=0.952 

Ave=0.973 

2000 

ms 

KTH Boxing Person 
8 

20 Max=14.86 
Min=5.83 

Ave=8.12 

Max=40.48 
Min=36.41 

Ave=39.14 

Max=0.987 
Min=0.981 

Ave=0.984 

2000 
ms 

KTH Boxing Person 
9 

20 Max=25.08 
Min=6.26 

Ave=10.55 

Max=40.16 
Min=34.14 

Ave=38.19 

Max=0.985 
Min=0.959 

Ave=0.976 

2000 
ms 

KTH Boxing Person 

15 

20 Max=16.33 

Min=6.42 

Ave=9.15 

Max=40.05 

Min=36.00 

Ave=38.67 

Max=0.992 

Min=0.986 

Ave=0.988 

2000 

ms 

KTH Boxing Person 

17 

20 Max=13.96 

Min=4.24 

Ave=7.14 

Max=41.85 

Min=34.18 

Ave=40.07 

Max=0.988 

Min=0.968 

Ave=0.983 

2000 

ms 

KTH Boxing Person 
20 

20 Max=35.61 
Min=8.93 

Ave=15.36 

Max=38.62 
Min=32.62 

Ave=36.67 

Max=0.962 
Min=0.985 

Ave=0.977 

2000 
ms 

TABLE 3: THE ACCURACY AND LOSS VALUE FOR THE CNN-VAE MODEL TRAINING. 
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figures showed that the our model achieved good generation comparison with other models because the quality of 

the  

 

 

 

 

 

dataset No. of 

Training 

Frames 

No. of 

epochs 

Batch 

size 

Learning 

rate 

Accuracy of 

Training 

Loss 

value 

KTH 500 5000 50 0.001 0.92 0.082 

Weizmann 201 5000 20 0.001 0.97 0.037 

Fig 10: The Comparison of PSNR values between conv lstm +res , mcnet+res and our model of KTH dataset. 

Fig 7: The loss value of cnn-vae model of KTH 

dataset. 

Fig 11: Qualitative comparison between our model and ground truth (A) Weizmann dataset for generation waving 

motion; (B) KTH datase for generation boxing motion. 

Fig 8:The loss value of cnn-vae model of 

Weizmann dataset. 

Fig 9: The PSNR values for generated frames of  (a) Weizmann dataset (waving motion), (b) KTH dataset (boxing motion). 
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generated frame have good values approximately the PSNR between 40 to 37 and the length of generated video exceeded 1000 

ms While the length of the videos generated by other models did not exceed 1000 milliseconds. This due to that the prediction 

and generation in the proposed system depended on the probability distribution not on single position in tensor so in the end 

the system must predict sample has meaningful value and produce new predicted sample which the system decoding this new 

sample to produce new reconstructed frame.  

10 Conclusion 
In this paper the wavelet transform with VAE and LSTM-MDN layers have been proposed for generating new video 

from one input frame. The CNN-VAE has been used to extract features from input subbands and mapping features to latent 

space by computing the mean and variance values for each input sample this is done in encoder stage. The Mixture Density 

Network has been used to increase the probabilities of distributed each latent variable, and each predicted latent variable has 

been decoded and reconstruct the new frame. This model can produce new generated video with good quality in display. 
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