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Abstract
Given the prevalence of breast cancer in the world as a whole and the highest infection rate among
women and the different incidence rates in different regions of the world, we can study this phenomenon
according to the effect of place rather than time as spatial data is affected directly in many influencing
factors, including: (age, geographical location, and socioeconomic and reproductive status, hormone
intake, lifestyle risk factors (smoking, diet, obesity, physical activity) and family history that contribute
to the disease.In our research, spatial regression models were used to analyze the spatial data of breast
cancer and compare the estimation between the spatial regression models for unfuzzy and fuzzy data to
find the best estimator among the spatial regression models. The spatial autoregressive (SAR) model,
the spatial error model (SEM), and the fuzzy spatial autoregressive model (FSAR) were applied. The
maximum likelihood method of the spatial automatic regression model was the best according to the

comparison method used MSE. Keywords: Spatial regression models, spatial weights matrix, least
squares method, maximum likelihood estimated , mean squares error, Fuzzy Logic
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1- Introduction

Spatial regression is one of the modern statistical methods for analyzing the relationship between regression
variables in the presence of a spatial correlation (spatial dependence), as a relationship between regression
variables and the spatial lag itself. It is one of the directions of spatial econometrics that deals with spatial
phenomena, where spatial series are distributed for each variable on the basis of space, not time [2].
Spatially characterized by the spatial dependence between observations of the sample data at different
points, which means that the observations are close to each other; It has a greater degree of spatial
dependence than those farther from the center, namely, the strength of spatial dependence between
observations decreases with the distance between them, and ignoring spatial dependence may lead to
weaknesses in statistical methods for spatial data analysis. The theory of aggregates is fuzzy, which is
concerned with phenomena whose variables are measured in points Measured in terms of periods, or what
are described as cases with fuzzy data Because of its characteristics that make it unclear, such as variables
that belong to a certain degree to its groups and do not have a complete affiliation, as well as the case for
linguistic variables that cannot be measured numerically, and studying how to formulate spatial regression
models for fuzzy data based on fuzzy logic information [1], In this research, the issue of the spread of breast
cancer in Iraq to a number of regions was addressed. The causes of cancer are still not well understood. But
there are many causes and factors that influence the development of cancer (breast cancer). These risk
factors include age, geographic location (country), socioeconomic and reproductive status, hormone intake,
lifestyle risk factors (smoking, diet, obesity, physical activity), and history. Familial breast cancer
contributes to a better understanding of tge risk of breast cancer, Therefore this study came to addregs this
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dangerous phehomenon in its various dimensions and by using simulation to generate non-fuzzy datd and
fuzzy data, then apply spatial regression models to obtain estimations and apply estimation methods: the
usual least squares method and the method of greatest possibility, then compare between spatial regression
models with a measure of average squares error to obtain On the best estimate.

2- Spatial regression : [9][17]

Spatial regression is a statistical method used to determine the relationship between the repressor variable
and the regression variables taking into account the correlation between regions. it must use a spatial model
spatial the data, because the regression variables that influence the regression variable can be different at
each location. the fundamental concepts of spatial dependence and spatial autocorrelation, which is a
property of data that arises whenever there is a spatial pattern in the values, as opposed to a random pattern
that indicates no spatial autocorrelation., The general model of spatial is:[13]

Y=pWY +ZB + AW, +e ... (1)

Where

e~N (0, a2 In)

Y:isavector (n x 1) for the observation regression variable.

W: is the spatial weights matrix (n x n).

p:. parameter of spatial autoregressive .

A: parameter of spatial autoregressive for error.

Z: matrix (n x (k+1)) for the observation regression variables. B: is a vector ((K+1) x 1) Parameter to be
estimated.

€: is the vector (n x 1) for the error term.

u: is the vector (n x 1) for the error term which is spatial correlated.

There are several models for spatial regression as follows:

2- Spatial Autoregressive Model (SAR):[4][5]this model (SAR) is a spatial regression model
whose regression variables are spatially correlated meaning that this model has a dependence on one
observation in a region with observations in its neighboring region. The model yields better classification
and prediction accuracy for many spatial data sets exhibiting strong spatial autocorrelation. It is the most
straightforward way of incorporating the notion of spatial dependence in a linear regression framework.
The general forms for SAR can be writtenas:-Y = pWy+Z B + ¢ ..(2)Wheree~N (0, o°ly)

Y: is avector (n x 1) for the observation regression variable.

W: is the spatial weights matrix (n x n).

p :parameter of spatial autoregressive model.

Z: matrix (n x (k+1)) for the observation regression variables.

B: is a vector ((K+1) x 1) Parameter to be estimated.

€: is the vector (n x 1) for error term

4- Spatial Error Model (SEM): [14][15]One of the most important violations that plague regression
model is the independence of the error term, so it will be studied with this model. It is assumed that the
error or (model errors are linked spatially) reversed the presumption of independence of errors, one of the
aims of THE model spatial error model (SEM) to spatial error correctionY = Zg +e ..(3)

e= AWate
e=(1-2W)le
Y=ZB+[(IN-AW _2)] e
g ~N(0,62 In)
Where
Y: is a vector (n x1) for the views depend variable. W: is the spatial weights (nxn) matrix
Z: matrix (nx (k+1)) the observation of explanatory variables
B: vector ((K+1) x1) Parameter required estimation In: identity ( nxn) matrix
A: is the spatial parameter In: is the identity (nxn) matrix
u: is a vector of (nx1) error term which spatially correlated e: is a vector of (nx1) random error term

5 - Fuzzy Logic Subtract d. Lutfi Zadeh in 1965, the concept of the fuzzy group, Set Fuzzy, which differs
from the classical group in that it allows each element to have partial affiliation, where each element has a
degree of belonging to the group with values ranging between zero and one (one affiliation is full
membership and zero is lack of membership,[8] and the values between them indicate degrees of partial
merTbership )Fuzzy logic is based on the concept of a fuzzy number:
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5 1 Fuzzy number|[7]: describes uncertain cases or unclear data as variables that belong in proportl nto
their totals and have no complete affiliation, or meaningful variables that cannot be measured numerically,

but in the form of periods. Its affiliation is from one to zero,

5-2 Membership function (affiliation[7]): It is used to determine how any element x belongs to the fuzzy
group A within an inclusive group X. A value is determined for it in the range between [1,0] and it is
symbolized by pA (xX)Function: [7] Membership 5-2-1 TriangularThis function has three parameters a,b,c,
and it can be represented by the following formula:

(.x_a

ifa<x<b

b—a f
.UA(x):<C—x ifh<x<c
c—>b -
\ 0 otherwise

5-2-2 Trapezoidal Membership Function:[7]This function has three parameters a,b,c,d and it can be
represented by the following formula:

X—a |
,if a<x<b
—a

b
1, if b<x<c
d

HaA(x) =

ifc<x<d
e ifc<x
0 otherwise

5-2-3 Bell-shaped Membership Function:[7]

It is also called the Gaussian function and is represented as in the following formula:
(x —a)®

May = €€ = ——F—, if —o<x<oo

5-3 fuzzy spatial autoregressive model[16] : So, the general formula for the fuzzy spatial
autoregressive model, after converting the fuzzy number into a normal number with the trigonometric
affiliation function, is the formula:

Ve =Awy,+e, ..(4)

YVo=0U—-—Aw)"te, wheni=0
Ye=pwy. te. |pl<1
Ye=(U—-pw)le

y.= vector (n*1) representing the fuzzy numbers of the dependent variable
I = unit matrix with dimension (N*N)
p= spatial regression parameter
W= spatial weight matrix
=is a vector (n*1) that represents the random errors of the fuzzy modele,

6- modalities: Estimation

6-1 method of estimating the Maximum likelihood:[17]
The method of Maximum likelihood (MLE), is one of the most important methods because it gives the best
estimate of the parameter among several possible estimations, and it is possible to estimate in this way for
the two models (SAR), (SEM),(FSAR), which models were defined for the first time by Ord (1975)[17] [3]
Assuming it is a natural state of error terms. Then follows the joint probability from the multivariate normal
distribution to Y in contrast to what applies to the classical model
6-1-1 Estimation Maximum likelihood for (SAR) model : [2][10]
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T‘Flﬂéofllrst Icompr ensive treatment of maximum likelihood estimation of regression models that incorpbrate
spatial autocorrelation in the form of a spatial lag by Ord (1975). An important aspect of this likelihood
function is the Jacobian of the transformation, which takes the form |I-pW| in respectively the spatial lag
models:
Y = XB+pWY +¢ ...(7)
Mximumliklehood for model is:

n n

LnL(B, p, 0?) =- 2 Ln 2 []- 2 Ln o2 + Ln|(I-pW)| -(1/269)[( Y —pWy -XB)' (Y-pWy -XB)] ... (8 )
By differentiating with respect to B and 62 and setting them equal to zero, we get

by =[ (X' X)* +X (1-pW)Y] (9)

e=Y-X[ (X'X)t +X'Y]-p[ (X' X)! +X'WY] (10)

Using the iterative method for the greatest possibility function steps, the variance estimate is obtained as
follows:

®

52— (y — pWy)'(y — pWy)

(11)
n
6-1-2 Estimating the greatest potential of the SEM model:[2][17]
The interest in this model is (0), which explains the correlation between the residuals [6].

The maximum possibility function for this model is:
Y=XB+u ..(I12)

- N n

LB, 0,069)= 2 Ln2[]- 2Lno2+Ln|(l—0W)-(1/26)[(Y-XB)'(I-OW)'(I-0W)(Y-XB)]) ...(13)
By differentiating with respect to § and 62 and setting them equal to zero, we get

bviey = (X' (1=0W)' (I-0W) X TT X (I -0W) (I-0W)Y ... (14)

e=[Y-Xbmg]

o’mp=€'e/n .. (15)

6-1-3 Estimating the maximam liklood of the FSAR model:[16]

Ye —pWY: =Z: +ec ...(17)

1
L(Bpca? /Y Z;) = |l — pW| exp [—Fe’e] ..(18)

(2no?2)n/2
We can get:
In(L) = —2Ln(2m) — 2Lno? + |1 — pW| — == (Ve — pWYe — Zc) (Yo — pWY — ZB) (19)
Glz\/ILE — (eoc—peic)/(eoc—peic) ...(20)

n

6-2 method of estimating of the Ordinary Least Squares (OLS):[13][17]
The classical general regression model : is the most well-known of all regression techniques, and aims to
estimate the regression coefficient vector § by the OLS method such that the total squared difference between
the observed and predicted values for the response variable and the explanatory variables is minimized, This
type of regression is known as "universal" because of the spatial invariance of its modulus estimates, which
means that one model can be applied equally to different areas of interest. The mathematical formula is:
y=XB+e ...(21)
6-2-1 Ordinary least squares estimation of the SAR model: [11][2]
The explanatory variables are independent and follow a normal distribution. Under these assumptions, the
OLS estimation is unbiased and normal and can be statistically effective for spatial regression models. As
shown below, the SAR model and its formula:[43]
e=YpWY-ZB ...(22)
E(g'e) =Y Y—pY' WY—pY' W' Y+p? Y' W' WY-2B'Z' Y+2p B' Z' WY+B' Z' ZB ...(23)
After the derivation and substitution operations the estimation formula for the spatial autoregressive
parameter (p) is obtained.
=Y WWY-b'ZWYT[Y'WY-he'Z WY ]...24)

6-2-2 Ordinary least squares estimation of the SEM model:[11] [2]
To estimate the spatial error model using the OLS method, whereby it is assumed that the errors are
independent and follow a normal distribution under these assumptions, as shown below: whereas
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Y=ZB+I-pw)™* U
E(ee) =’ [(I1—pW) (I —pw)]...(25)
=[W(I- pW)™ (ZB-p WZP) E(u”) +W(I-pW)™* E[uu"]
oz W (I-pW) 1 ...(26)

6-2-3 Ordinary least squares estimation of the FSAR model:[16]
The estimate for the model after converting the fuzzy number into a regular number with the affiliation
function is:

ec=Yc—pWY:—Z:8 ...(27)
After a number of derivations and substitutions we get

p[Y' cW'WY¢ — b'1Z'cWYcI] =Y'cWYc —b'Z'cWYc

o (Yo —pWYe — ZcB) (Yo — PWYc — ZcB)

0% = S ..(28)
7- Weight Matrix:
It is a square matrix in which elements have positive values and are denoted by W and not necessary to be
symmetric and create this matrix based on neighbouring and relation neighbour from the location for another
location in the same row in the rows of the matrix and value for the diagonal usually equal to zero and chose
weight matrix is very important for Determine the spatial effects so we must create an Appropriate weight
matrix and there for some way to create this matrix [2][13]
To build the spatial weights matrix there are two types, in this thesis we use Binary Contiguity Weights
Matrix.
7-1 Binary Contiguity Weights Matrix:[12][13]
The matrix W is positive and square (nxn), if i,j are contiguous wij=1 and if not contiguous wij =0
{ } W= 1 if i neighbour j

0 otherwis

The other type is the distance weight

{ } Wij= 1/dij>  for i=j

0 for 1#]
di: is the distance between the geographical centres of the two regions.
To build the contiguity weights matrix dependence on common borders, we review some important
methods from:
7-1-1 Rook Contiguity:[12][13]
This matrix the value of the element equal to one if the two areas neighbor by limited and have relation
between the two areas in any side, and it is equal to zero if it is not contiguous. This matrix used in
applications more than the others.

Figure (2) for the Rook Weight Matrix

7-1-2 Bishop Contiguity:[12][13]

This matrix arises if the two areas connected a point and this point is the connected limited between the two
location are smallest connected limited and be the elements value is equal to one and another element is
equal to zero .

Figure (3) for the Bishop VXeight Matrix
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7-1 - 3 Queen Contiguity:[12][13]
This matrix gets its elements from the sum of (rook) and (bishop) matrix elements and neighbor in this
matrix is based on connect point or connect limited.

Figure (2-4) shows the Queen Weight Matrix
8- (Comparison Criteria)
8-1 Mean squared error (MSE)[17]: It is a preference comparison criterion that is widely used to predict
accuracy, and it is the average squared difference between the actual observations and the expected
observations. (Z1,Z2...Zn) A random sample drawn from the population of the distribution function
formula (Z;)F is known, but depends on the unknown parameter A and estimated for 1", the value is:

n

1.
MSE =~ ;(x) (2)?

n = the number of times the experiment was repeated
A" = estimated value
A =true value
. Experimental side:
In this research, the simulation method was used to generate the data required in the research. Simulation can be
defined as a numerical technique used to carry out numerical computer tests. The logical and mathematical
relationships interact with each other to describe a behavior or phenomenon in the real world. Simulation is
distinguished in that it reduces the high costs, time and effort that It is required to work in obtaining samples from
the practical reality. The Monte Carlo method is among the most important, best and most widely used simulation
methods. To generate the necessary data for the purpose of comparison between the methods with different sample
sizes and different values, the simulation method was implemented through the use of the MATLAB statistical
program and the use of the comparison criterion between the estimation methods (mean square error (MSE). By
means of simulations, spatial regression models are generated and applied
Spatial autoregressive model (SAR ) :y=pWy+ X+ ¢
Spatial error model (SEM) : y=pX+e
Fuzzy Spatial autoregressive model ( FSAR);
Ye =AWy, +ec
To generate spatial data in a Monte Carlo way, where the simulation includes several proxy steps:
The first step: Determining two sample sizes (n = 150) concerned with the study and assuming two sets
of values of explanatory variables p: (P =5, P = 10) and one response variable (Yi).
The second step: In this step, an independent random variable (X) and an error-limit random variable
(e) are generated.
The third step: In this step, matrices are found, Wij (QueenContiguity) , The criterion is that adjacency is
when two cells share a common side as well as a common vertex
1 if i and j are contiguous
Wij = {O if i and j are contiguous
Fourth step: estimation methods: Two types of estimation methods were used for the spatial regression
model parameters ((FSAR), (SAR), (SEM)), each estimation method for each regression model, namely:
The method of ordinary least squares (OLS) and its formula is as follows:
e Estimation using the least squares method of the SAR spatial error model, according to the
mathematical formula
boLs)= (X' X)-1 X' Y —p(X' X) -1 X' WY ...(28)
e Estimation using the least squares method of the SEM spatial error model, according to the
mathematical formula -
bos = X" X)Xy .. (29)
e Estimation using the least squares method of the SEM spatial error model, according to the
mathematical formula
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.(30)  bois = (x'cxe) X (Yo — p(x cxc) T (WY
The method for estimating the maximum likelihood (MLE) and its formula is as follows:
n
L=11 1f (x:,4)
=
e Estimation using the maximum likelihood of the SAR model, the spatial auto regression, according
to the mathematical formulas:

bvie =[ (X' X)T +X' (1-pW)Y ] ...(31)
e Estimation using the maximum likelihood of the SEM model, the spatial auto regression, according
to the mathematical formulas:
b(MLE) =[ (X' (I-6W)' (I-0W) X ]-1 X (1-0W) I—-0W)Y ...(32)
e Estimation using the maximum likelihood of the FSAR model, the Fuzzy spatial auto regression,
according to the mathematical formulas:

bure = (x'cx) 7' x' (I — pW)Y; ...(33)

The sixth step: to compare and compare between statistical estimators, the most important
statistical measure will be used, which is the mean squared error (MSE), as it is considered
the most common, as it measures how close and far the estimator is from the real values.
MSE = = $1, () (A)?
7- The results of the simulation experiment:
The first experiment: includes the sample size (n = 150) and for the group of explanatory variables P
= 5, and by applying the estimation methods (OLS, MLE) for each model (SAR, SEM, FSAR) as in
Table No. (2) to estimate the parameters of the models, as for finding the efficiency The relative
methods, a comparison table was made using the comparison scale (MSE), and we had the results as
shown in Tables (1). Table (1) which includes comparison results using the mean square error

measure (MSE) for both estimation methods (OLS, MLE) applied to each spatial regression
model (SAR, SEM, FSAR).

Model Method MSE
SAR OLS 0.041856
MLE 0.042533
SEM OLS 0.040916
MLE 0.022283
FSAR OLS 0.021892
MLE 0.047265
Best model FSAR -OLS 0.021892
Worst model FSAR -MLE 0.047265

Table (2) includes an estimate of the parameters of the probabilistic regression models (SAR,
SEM, FSAR) and by applying the estimation methods (OLS, MLE) for each model

E SAR SEM FSAR
stimation OLS MLE OLS MLE OLS MLE
Method
Bo 0.198735 | 0.199719 | 0.197342 | 0.155429 | 0.153588 | 0.206227

0.764251 | 0.765236 | 0.762859 0.720945 | 0.719104 0.771744

1
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3’2 0.520029 | 0.521014 | 0.518637 0.476724 | 0.474883 0.527522
B3 0.405618 | 0.406603 | 0.404226 0.362313 | 0.360472 0.413111
B4 0.340959 | 0.341944 | 0.339566 0.297653 | 0.295812 0.348452
Bs 0.294927 | 0.295912 | 0.293534 0.251621 | 0.249781 0.30242

The comparative results are shown as in Tables No. (9) for the second experiment, where the sample size is:
n = 150, and for the group of explanatory variables P = 5 and one response variable Yi, and by applying the
estimation methods (OLS, MLE) to estimate the parameters of each spatial regression model (SEM, SAR,
FSAR). ) and using the comparison scale MSE Mean squares error, the comparison ratios are almost close,
but the MLE estimation method for the SAR model showed the lowest mean squares error compared to the
rest of the estimates for the spatial regression models, reaching a percentage of (0.022537), which is the best
model, and the OLS method for the SEM model showed the largest mean squares The error is clear from the
rest of the estimates, as it amounted to (0.0428175), and thus it is considered the worst model

The second experiment: where the sample size is 150, but for the group of explanatory variables P = 10 and
for one response variable (YY), and by applying the methods (OLS, MLE) for each model (SAR, SEM, FSAR)
as in Table No. (4) to estimate the parameters of the spatial regression models, As for finding the relative
efficiency of the methods, a comparison table was made using the comparison scale (MSE).Table (3), which
includes comparison results using the mean square error measure (MSE) for both estimation methods
(OLS, MLE) applied to each spatial regression model (SAR, SEM, FSAR)

Model Method MSE

SAR OLS 0.059208231

MLE 0.095740539

SEM OLS 0.071436977

MLE 0.127238258

FSAR OLS 0.109673131

MLE 0.028079074

Best model FSAR -MLE 0.028079074
Worst model SEM- MLE 0.127238258

Table 4) includes an estimate of the parameters of the probabilistic regression models (SAR,
SEM, FSAR) and by applying the estimation methods (OLS, MLE) for each model.

Estimation SAR SEM FSAR
Method OLS MLE OLS MLE OLS MLE
Bo 0.04843 | 0.070464 | 0.056604 | 0.085525 | 0.077441 | 0.018952
B, 0.729687 | 0.751722 | 0.737862 | 0.766782 | 0.758698 | 0.70021
B, 0.505889 | 0.527923 | 0.514063 | 0.542984 | 0.5349 | 0.476411
Bs 0.405904 | 0.427938 | 0.414078 | 0.442999 | 0.434915 | 0.376426
Bs 0.323928 | 0.345962 | 0.332102 | 0.361023 | 0.352939 | 0.29445
B 0.267238 | 0.289272 | 0.275412 | 0.304333 | 0.296249 | 0.23776
Be 0.23464 | 0.256675 | 0.242815 | 0.271735 | 0.263652 | 0.205163
B, 0.216936 | 0.23897 | 0.22511 | 0.254031 | 0.245947 | 0.187458
Bs 0.185984 | 0.208019 | 0.194158 | 0.223079 | 0.214996 | 0.156507
Bo 0.181571 | 0.203605 | 0.189745 | 0.218666 | 0.210582 | 0.152093
B1o 0.185072 | 0.207107 | 0.193246 | 0.222167 | 0.214084 | 0.155594

e The comparative results are shown as in Tables No. (11) for the second experiment, where the sample
size is n = 150, and for the group of explanatory variables P = 10 and one response variable Yi, and by
applying the estimation methods (OLS, MLE) to estimate the parameters of each spatial regression model
(SEM, SAR, FSAR) and using By comparison scale MSE Mean squares error The MLE estimation
method for the FSAR model showed the lowest mean square efror compared to the rest of the estimates
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%?It e spatial” regression models, reaching a percentage of (0.028079074), which is the best model.
(0.127238258), thus it is considered the worst model The following steps show how to convert data into
fuzzy data by using the trigonometric membership function: The first step: Determine the highest
value and the lowest value of each column for the independent or dependent variables in all tables, the
results of the research experiments.The second step: we extract the rang for each value from the value of
a column for all the tables of the experiments.The third step: the membership number is found and 7 is
selected to divide the affiliation periods for each group of numbers to complete the fuzzing process by
role. The fourth step: obtaining the fuzzy numbers and applying the previous research methods with the
experiments that were conducted

e The third experiment: includes fuzzy data with a sample size of (n = 150) and for the group of
explanatory variables (P = 5), and by applying the estimation methods (OLS, MLE) for each model (SAR,
SEM, FSAR) as in Table No. (5) to estimate the parameters of the models As for finding the relative
efficiency of the methods, a comparison table was made using the comparison scale (MSE), and we had
the results as shown in Tables (6). Table (6) which includes the results of a comparison using the mean
square error measure (MSE) for both estimation methods (OLS, MLE) applied to each spatial
regression model (SAR, SEM, FSAR).

Model Method MSE

SAR OLS 0.053316

MLE 0.068888

SEM OLS 0.042817

MLE 0.020035

FSAR OLS 0.058281

MLE 0.066322

Best model SEM -MLE 0.020035
Worst model SAR -MLE 0.068888

Table (5) includes an estimate of the parameters of the probabilistic regression models (SAR, SEM,
FSAR) and by applying the estimation methods (OLS, MLE) for each model

Estimation SAR SEM FSAR
Method OLS MLE OLS MLE OLS MLE
Bo 0.213775 | 0.230503 | 0.200128 | 0.138125 | 0.219467 | 0.227953
B. 0.779291 = 0.79602 | 0.765645  0.703641  0.784983 | 0.79347
B, 0.535069 | 0.551798 | 0.521423 | 0.45942 | 0.540761 | 0.549248
Bs 0.420658 | 0.437387 | 0.407012 ' 0.345009  0.426351 | 0.434837
B4 0.355999 | 0.372728 | 0.342353 | 0.280349 | 0.361691 | 0.370178
Bs 0.309967 | 0.326696 | 0.296321 ' 0.234318 ' 0.315659 | 0.324146

The comparative results are shown in Tables No. (6) for the second experiment, where the sample size is: n
= 150, and for the set of explanatory variables, P = 5, and one response variable, Yi, and by applying the
estimation methods (OLS, MLE) to estimate the parameters of each spatial regression model (SEM, SAR,
FSAR). And by using the comparison scale MSE Mean squares error, the comparison ratios are almost close,
but the MLE estimation method for the SEM model showed less average squares error than the rest of the
estimates for the spatial regression models, reaching a ratio of (0.020035), which is the best model, and the
MLE method for the SAR model showed the largest mean squares error than The rest of the estimates are
clear and amounted to (0.068888), and thus it is considered the worst model.
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e The fourth experiment: for fuzzy data, where the sample size is 150, and for a group of illustrative
variables, P = 10, and for one response variable (Y), and by applying the methods (OLS, MLE) for each
model (SAR, SEM, FSAR) as in Table No. (8) to estimate the parameters of the spatial regression models
As for finding the relative efficiency of the methods, a comparison table was made using the comparison
scale (MSE), and we had the results as in Tables (7). Table (7) which includes the results of a comparison
using the mean square error measure (MSE) for both estimation methods (OLS, MLE) applied to each
spatial regression model (SAR, SEM, FSAR).

Model Method MSE

SAR OLS 0.085723

MLE 0.091137

SEM OLS 0.021327

MLE 0.045275

FSAR OLS 0.040447

MLE 0.066058

Best model SEM -OLS 0.021327
Worst model SAR- MLE 0.091137

Table (8) includes an estimate of the parameters of the probabilistic regression models (SAR, SEM,
FSAR) and the application of estimation methods (OLS, MLE) for each model

Estimation Method SAR SEM FSAR
OLS MLE OLS MLE oLS MLE
Bo 0.065056 = 0.068024 0.007192 0.037481 0.033063 0.053136
B1 0.746313  0.749282 0.688449 0.718738 0.71432 0.734393
B2 0.522515 ' 0.525484 0.464651 0.49494  0.490522 0.510595
B3 0.42253 0.425498 0.364666 0.394955 0.390537 0.41061
Ba 0.340554 | 0.343522 0.28269 0.312979 H 0.308561 0.328634
Bs 0.283864 0.286832 0.226  0.256289 0.251871 0.271944
Be 0.251267 = 0.254235 0.193403  0.223691 0.219274 0.239347
[ 0.233562  0.236531 0.175698 0.205987 @ 0.201569 0.221642
Bs 0.20261 0.205579  0.144746 0.175035 0.170617 @ 0.19069
Bo 0.198197 0.201166 0.140333 0.170622 0.166204 0.186277
B1o 0.201698 = 0.204667 0.143834 0.174123 0.169705 0.189778

- The comparative results are shown as in Tables No. 7)) for the second experiment, where the sample size is h = 150,
and for the set of explanatory variables, P = 10, and one response variable, Yi, and by applying the estimation methods
(OLS, MLE) to estimate the parameters of each spatial regression model (SEM, SAR, FSAR), and with the help of By
comparison scale MSE Mean squares error The OLS estimation method of the SEM model showed the lowest average
square error of the rest of the estimates for the spatial regression models, reaching 0.021327, which is the best model,
and the MLE method of the SEM model showed the largest mean square error of the rest of the estimates clearly.

8. Conclusions: After conducting the description and implementation of simulation experiments on spatial regression
models (SAR), (SEM)) (FSAR) and applying the two estimation methods (OLS), (MLE) and the results presented to
obtain the best method, the researcher concluded the following:

1- We note by using the measure of the average sum of squares error of un fuzzy data for comparison of the estimation
methods (OLS), MEL) in estimating spatial regression models (FSAR), (SEM), (SAR) according to the spatial weight
matrix that the best estimation method is (OLS) for the model Fuzzy spatial autoregressive (FSAR) at a sample size of
150 and explanatory variables P =5

2- We note when using the estimation methods (OLS), (MLE) on spatial regression models. The comparison results
showed the comparison scale Mean Squares Error (MSE) in the second experiment, where the sample size is 150 items
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and exﬁ;natory ariables P = 10 that the method of greatest possibility (M LE) ) is better than the method of estifation
(OLYS) of the (FSAR) model, as it achieved the lowest value of the comparison standard (MSE) by increasing the number
of explanatory variables with the same sample size for un fuzzy data.

3- As we notice at the same sample size 150 using estimation methods (OLS), (MLE) on spatial regression models and
using the comparison scale Mean Squares Error (MSE)) but for fuzzy data and the explanatory variables were P = 5, the
results showed that the method of greatest possibility (MLE) of the (SEM) model is the best because it achieved the
highest value of the comparison standard (MSE).

4- Results for the same sample size of 150 for fuzzy data and at the number of explanatory variables P = 10 showed that
the method (OLS) of the (SEM) model is the best method of estimation, since the comparison standard (MSE) was the
lowest.

9- Recommendations: Based on the conclusions reached through the experimental results, the most important
recommendations can be included as follows:

1- Using the method (OLS) and the method of greatest probability (MLE) to estimate fuzzy spatial autoregressive
models on non-fuzzy data, due to its effectiveness. The method (OLS) and the method of greatest probability (MLE)
can also be used to estimate spatial error models to estimate fuzzy data.

2- The use of a proposed spatial weight matrix (W) for spatial models.

3- Use the presented estimation methods and apply them to real data.

4- Using other methods to find the distances between the values of the observations as a standard for comparison.
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