

The goal of this paper is to present and investigate the concept of pre-generalized w-closed sets with some properties related it in the topological spaces.

1. Introduction

Bhattacharya and Lahiri (Bhattacharya and Lahiri, 1987) investigated semi-generalized closed (sgclosed) sets. In (Palaniappan and Rao 1993), Palaniappan and Rao proposed regular generalised closed (rgclosed) sets. Andrijevic (Andrijevic, 1996) developed and investigated b-open sets in 1996. Generalized pre-regular closed (briefly gpr-closed) sets were introduced by Gnanambal in (Gnanambal 1997). In topology, Sundaram and Sheik John invented the idea of w-closed sets (Sundaram and Sheik, 2000). We develop pre-generalized w-closed sets in topological spaces and investigate their basic features in this paper.

2. Preliminaries

Through this article, X refers to a topological space in which there is no separation axiom. cl(S) signifies the closure of S, int(S) the interior of S, pcl(S) the pre-closure of S, and bcl(S) the b –closure of S for any subset S of X. S^c also stands for the complement of S in X. The definitions that follow will come in handy in the next parts.

Definition 2.1.

1. Let $S \subseteq X$ Then s is

pre – open set [6] if $S \subseteq int(cl(S))$ and a pre – closed set if $cl(int(S)) \subseteq S$.

2. semi-open set [8] if $S \subseteq cl(int(S))$ and a semi – closed set if $int(cl(S)) \subseteq S$.

3. b – open set [14] if $S \subseteq cl(int(S)) \cup int(cl(S))$ and b – closed set if $int(cl(S)) \cap cl(int(S)) \subseteq S$.

4. if S = int(cl(S)) then called a regular – open set [1] and if S = cl(int(S)) then called a regular – closed set.

Definition 2.2.[11]

Let $S \subseteq X$ Then S is a w-open set if $int(cl(S)) \subseteq S \subseteq cl(int(S))$.

Definition 2.3.

Let $\subseteq X$.

1. if $cl(S) \subseteq M$ whenever $S \subseteq M$ and M is open in X. Then S is generalized closed set (for short, g – closed) [15].

2. if $pcl(S) \subseteq M$ whenever $S \subseteq M$ and M is regular-open in X. Then S is generalized pre-regular closed set (for short, gpr - closed)[6].

3. if $cl(S) \subseteq M$ whenever $S \subseteq M$ and M is regular-open in X. Then S is regular-generalized closed set for short, rg - closed [10].

4. if $cl(int(S)) \subseteq M$ whenever $S \subseteq M$ and M is regular-open in X. Then S is weakly generalized closed set (for short, rwg - closed)[11].

5. if $bcl(S) \subseteq M$ whenever $S \subseteq M$ and M is regular-open in X. Then S is regular generalized b-closed set (for short, rgb - closed)[7].

6. if $cl(S) \subseteq M$ whenever $S \subseteq M$ and M is semi-open in X. Then S is weakly closed (for short,w-closed) set [11].

7. if $scl(S) \subseteq M$ whenever $S \subseteq M$ and M is semi-open in X. Then S is semi-generalized closed set (for short, sg - closed)[3].

8. if $bcl(S) \subseteq M$ whenever $S \subseteq M$ and M is semi-open in X. Then S is semi-generalized b-closed set (for short, sgb - closed) [4].

9. if $scl(S) \subseteq M$ whenever $S \subseteq M$ and M is open in X. Then S is generalized semi-closed (for short, gs – closed set)[5].

10. if $cl(S) \subseteq M$ whenever $S \subseteq M$ and M is w-open. Then S is generalized w-closed set (for short, *gw*-closed set) [12].

11. If $cl(S) \subseteq M$ whenever $S \subseteq M$ and M is gs –open in X. Then S is gs^* – closed set [9].

3. β -GENERALIZED W-CLOSED SETS

Pre-generalized w-closed sets in topological spaces are introduced in this section. We also go over some of their fundamental characteristics

Definition 3.1.

Let $S \subseteq X$ Then S is β -generalized w-closed (briefly, βgw - closed) if $\beta cl(S) \subseteq M$ whenever $S \subseteq M$ and M is w-clopen.

Proposition 3.2.

Let $S \subseteq X$ Then. Then every set *S* which is w-closed set is β gw-closed.

Proof: Let *S* be a w-closed set. Let *M* be a w-open set containing *S*. Since every w-open set is β -open, so *M* is β -open. Hence, $cl(S) \subseteq M$. Now, since $\beta cl(S) \subseteq cl(S)$, then $\beta cl(S) \subseteq M$. Thus, *S* is βgw -closed. As the following example shows, the converse of Proposition 3.2 does not have to be true.

Example 3.3.

Let $X = \{h, k, l, m, n\}$ and $\rho = \{\phi, \{h, k\}, \{l, m\}, \{h, k, l, m\}, X\}$ is a topology on X. Thus $\{h, k, l\}$ is βgw - closed but not w-closed.

Proposition 3.4. Let (X, ρ) be a T.S. Then every closed set is βgw -closed.

Proof: Let *S* be closed set. `So *S* is w-closed because each closed set is w-closed. Hence, *S* is βgw -closed (Proposition 3.2).

As the following example shows, the converse of Proposition 3.4 does not have to be true.

Example 3.5.

Let $X = \{h, k, l, m\}$ and $\rho = \{\phi, \{h\}, \{k\}, \{h, k\}, \{k, l\}, \{h, k, l\}, \{h, k, m\}, X\}$ is a topology on *X*. Thus $\{k, l\}$ is βgw -closed but not closed.

Proposition 3.6.

Let (X, ρ) be a T.S. Then every gs^* -closed set is βgw -closed.

Proof: Let S be gs^* -closed set. So $cl(S) \subseteq Q$ where $S \subseteq Q$ and Q is gs-open. Let M be a w-open set. Now, since every w-open set is gs-open, so M is gs-open. Hence $cl(S) \subseteq M$. Since $\beta cl(S) \subseteq cl(S)$, so $pcl(S) \subseteq M$. Therefore S is βgw -closed.

As the following example shows, the converse of Proposition 3.6 does not have to be true.

Example 3.7.

Let $X = \{h, k, l, m\}$ and $\rho = \{\phi, \{h\}, \{k\}, \{h, k\}, \{h, k, l\}, \{h, k, m\}, X\}$ is a topology on X.Thus, $\{h, k\}$ is βgw -closed but not gs^* -closed.

Proposition 3.8.

Let (X, ρ) be a T.S. Then every regular closed set is βgw -closed.

Proof: obvious

As the following example shows, the converse of Proposition 3.8 does not have to be true.

Example 3.9.

Recall Example 3.7, we get $\{h, k, l\}$ is βgw -closed but not regular closed.

Proposition 3.10.

Let (X, ρ) be a T.S. Then every gs^* -closed set is βgw -closed.

Proof: Let S be a gs^* -closed set. Set M be w-open set. Then $cl(S) \subseteq M$. Now, since $\beta cl(S) \subseteq cl(S)$, so $\beta cl(S) \subseteq M$. Thus, S is βgw -closed.

As the following example shows, the converse of Proposition 3.10 does not have to be true.

Example 3.11.

Let $X = \{h, k, l, m\}$ and $\rho = \{\phi, \{h\}, \{k\}, \{h, k\}, \{h, l\}, \{h, k, l\}, X\}$ is a topology on X. Then $\{h, k\}$ is βgw -closed but not gs^* -closed.

Proposition 3.12.

Let (X, ρ) be a T.S. Then every βgw -closed set is *gpr*-closed.

Proof: Let S be βgw -closed set. Set Q be a regular open set. So Q is w-open because every regular open set is w-open. Hence, $\beta cl(S) \subseteq Q$. Therefore, S is gpr -closed.

As the following example shows, the converse of Proposition 3.12 does not have to be true. **Example 3.13.**

Let $X = \{h, k, l, m, n\}$ and $\rho = \{\phi, \{h\}, \{m\}, \{n\}, \{h, m\}, \{h, n\}, \{m, n\}, \{h, m, n\}, X\}$ is a topology on X. Thus, $\{h, n\}$ is *gpr*-closed but not βgw -closed.

On Topological Spaces with Pre generalized w-closed Sets Proposition 3.14.

Let (X, ρ) be a T.S. Then every βgw -closed set is rgb-closed.

Proof: Let *S* be a βgw -closed set. Then $\beta cl(S) \subseteq M$ where $S \subseteq M$ and *M* is w-open. Set *Q* be a regular open set. So, *M* is w-open. hence, $\beta cl(S) \subseteq Q$. And so, $bcl(S) \subseteq \beta cl(S)$ because every pre-closed set is b-closed. Thus, $bcl(S) \subseteq U$. Therefore, *S* is rgb -closed.

As the following example shows, the converse of Proposition 3.14 does not have to be true.

Example 3.15.

Let $X = \{h, k, l, m\}$ and $\rho = \{\phi, \{h\}, \{m\}, \{h, k\}, \{k, l\}, \{h, k, n\}, X\}$ is a topology on X. Then $\{m\}$ is rgb-closed but not βgw -closed.

Proposition 3.16. Let (X, ρ) be a T.S. If S is βgw -closed set s.t, $S \subseteq J \subseteq \beta cl(S)$, then J is βgw -closed set in X.

Proof: Let *M* be w-open set. So, $S \subseteq M$. Since A is βgw -closed, so $\beta cl(S) \subseteq M$. Hence $\beta cl(J) \subseteq M$, because $J \subseteq \beta cl(S)$. Thus, *J* is a βgw -closed set in *X*.

Proposition 3.17.

Let (X, ρ) be a T.S. Then all the subsets of *X* are βgw -closed if \emptyset and *X* are the only w-open sets. **Proof**: Let $S \subseteq X$. If $S = \emptyset$, then *S* is βgw -closed. If $A \neq \emptyset$, then *X* is only w- open set. So, $\beta cl(S) \subseteq X$. Therefore, *S* is βgw -closed.

As the following example shows, the converse of Proposition 3.16 does not have to be true. **Example 3.18.**

Let $X = \{h, k, l, m\}$ and $\rho = \{\phi, \{h\}, \{k\}, \{l\}, \{h, k\}, \{h, l\}, \{k, l\}, \{l, m\}, \{h, k, l\}, \{k, l, m\}, \{h, l, m\}, X\}$ is a topology on X. Thus, all the subsets of X are $\beta g w$ -closed but the w-open sets are $\phi, \{h\}, \{k\}, \{l\}, \{h, k\}, \{h, l\}, \{k, l\}, \{l, m\}, \{h, k, l\}, \{k, l, m\}, \{h, l, m\}, X$.

Proposition 3.19.

Let $S \subseteq X$. Then S is βgw -closed iff $\forall S \subseteq M$ and M is w-open, \exists pre-closed set V s.t, $S \subseteq V \subseteq M$.

Proof: Assume that *S* is βgw -closed and $S \subseteq M$ and *M* is w-open. Then $\beta cl(S) \subseteq M$. Set $V = \beta cl(S)$, so, $S \subseteq V \subseteq M$. Vise versa, suppose that *M* is w-open set. Thus, \exists pre-closed set *V* s.t, $S \subseteq V \subseteq M$ (by hypothesis). Since $\beta cl(A)$ is pre-closed set, so, $\beta cl(S) \subseteq V$. Hence, $\beta cl(S) \subseteq M$. Thus, *S* is βgw -closed. **Proposition 3.20.**

Let (X, ρ) be a T.S, and let $S \subseteq X$. If S is regular open and βgw -closed, then S is both β -open and β -closed.

Proof: Suppose that *S* is regular open and βgw -closed. So, $\beta cl(S) \subseteq S$, because every regular open set is w- open, Hence $S = \beta cl(S)$. And so, *S* is β -closed. Also, *S* is β -open, because *S* is regular open. Therefore, *S* is both β -open and β -closed.

Conclusion

We presented βgw -closed sets in topological spaces and looked at several of their basic features in this study. In addition, the relation among βgw -closed sets and several generalized sets in topological spaces has been investigated.

REFERENCES

1. A. Vadivel and K. Vairamanickam, $rg\alpha$ -closed sets and $rg\alpha$ -open sets in topological spaces, Int. J. Math. Analysis, 3 (37), 1803-1819(2009).

2. D. Andrijevic, On b-open sets, Mat. Vesnik, 48, 59-64 (1996).

3. S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math. 21(8), 717-719 (1990).

4. P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(3), 375-382 (1987).

5. L. Elvina Mary and R. Myvizhi, gs^* -closed sets in topological spaces, Int. J. Math. Trends and Technology, 7(2), 84-93 (2014).

6. Y.Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. Pure Appl. Math., 28, 351-360 (1997).

7. D. Iyappan and N. Nagaveni, On semi generalized b-closed set, Nat. Sem. on Mat. and Comp. Sci., Proc.4. Jan (2010).

8. N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70, 39-41 (1963).

On Topological Spaces with Pre generalized w-closed Sets

9. L. Elvina Mary and R. Myvizhi, gs^* -closed sets in topological spaces, Int. J. Math. Trends and Technology, 7(2), 84-93 (2014).

10. A.I. EL-Maghrabi and A.M. Zahran, Regular generalized-γ-closed sets in topological spaces, Int. Journal of Mathematics and Computing Applications, vol. 3, Nos. 1-2, 1-13 Jan-Dec (2011).

11. 13. P. Sundaram, M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica, 4, 389-392 (2000).
12. S. Malathi and S. Nithyanantha Jothi, On c*-open sets and generalized c*-closed sets

in topological spaces, Acta Ciencia Indica, XLIIIM, No.2, 125, 125-133 (2017).

13. S. Malathi and S. Nithyanantha Jothi, On generalized c*-open sets and generalized c*- open maps in topological spaces, Int. J. Mathematics And its Applications, Vol. 5, issue 4- B, 121-127 (2017).

14. K. Mariappa, S. Sekar, On regular generalized b-closed set, Int. Journal of Math. Analysis, vol.7, No.13, 613-624 (2013).

15. M.K.R.S. Veera kumar, On g^* -closed sets in topological spaces, Bull. Allah. Math. Soc, 18, 99-112 (2003).

