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Abstract

In this work, the Variational iteration method is practiced to the first order differential
equations of initial value problems with Different kinds of discontinuities, giving relevant
cases for the two linear and non-linear for different cases.

We make a comparison of the numerical results with the analytic solutions to
demonstrate the high accuracy of the solution results. Also, practice the classic Variational
iteration method with the iteration of the integral equation and the numerical solution with the
Trapezoidal and Simpson rules. The results show that the present method is very
straightforward and effective.

Keywords: Variational iteration method; Lagrange multiplier (x); Initial value problems; Unit
step function; Unit impulse function; Trapezoidal rule; Simpson rule.
1. Introduction

In 1978, Inokuti et al. [1] proposed a general Lagrange multiplier method to solve non-
linear problems. In 1999, He [2-4] proposed a new and fruitful method (so called variational
iteration method (VIM)) for solving linear and non-linear equations. The VIM has been
utilized by many authors quite effectively for obtaining analytic and/or approximate solutions
for a wide variety of scientific and engineering applications: linear and non-linear,
homogeneous and inhomogeneous as well [5,6]. The VIM gives rapidly convergent
successive approximations of the analytic solution if such a solution exists; otherwise, a few
approximations can be utilized for numerical purposes. The VIM generates a series solution
that occasionally converges to the analytic solution. The idea of the method is based on
constructing a correction functional by a general Lagrange multiplier and the multiplier is
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chosen in such a way that its correction solution is improved with respect to the initial
approximation or to the trial function.

In the modern biography, Waleed and Luis [7-9] practiced the Adomian decomposition
method (ADM) to the initial value problems (I\VPs) with discontinuities. Al-Hayani and
Rasha Fahad [10,11] have been utilized homotopy analysis method (HAM) for the same
IVPs. Ji-Huan [12] utilized the homotopy perturbation method (HPM) to solve non-linear
oscillators with discontinuities.

The main objective of this paper is to apply the VIM for solving IVPs of first order
with a discontinuous derivative, with unit step function or with unit impulse function to obtain
approximate-analytic solutions for different cases.

In what follows, we give a brief review of the VIM. We consider the following
general non-linear equation
Lu(x) + Nu(x) = g(x), (1.1)
where L is the linear operator, N is the non-linear operator and g(x) is a known analytic
function. The VIM was proposed by He [2-4], where a correction functional for Eq. (1.1) can

be rewritten as

X

U1 () = u, (x) + f u(s){Lu, (s) + Nii,(s) — g(s)}ds,n =0,1,2, ... (1.2)
0

where u = u(s) is general Lagrange multiplier [1-4] which can be identified optimally via
variational theory, u,(x) is an initial approximation, with possible unknowns. The function
i, iIs considered as a restricted variation [13], which means &1, = 0. Therefore, we first
determine the Lagrange multiplier u that will be identified optimally via integration by parts.
The successive approximation u,,,(x), to the solution u(x) will be readily obtained upon
using the Lagrange multiplier obtained and by using any selective function u,(x),

which can be easily solved by mathematical symbolic programs like Maple and Mathematica.
Consequently, the approximate-analytic solutions may be obtained by using u(x) =
lim,,_, o0 Uy (X).

2. VIM applied to an IVP
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Consider the general I\VP of first order [8,11]:

u +k*u—-Nw) =Af(x,u), u(0)=a 0<x<T, (2.1)
where k, A and a are real constants, N is a (possibly) non-linear function of yand f is a
function with some discontinuity.

A correction functional of equation (2.1) is the variational iteration method described

iteratively by
Up41(X) = up (%) + f u(){un(s) + k2uy (s) = N(i,(s)) = Af (s, u(s))} ds, (2.2)
0

where u = u(s) is the Lagrange multiplier. Then, we have

OUpq(x) = 6u,(x) + 6 fx,u(s){u’(s) + k?u(s) — N(u(s)) — Af(s,u(s))} ds, (2.3)
0

Calculus of variations and integration by parts, and noting that §,,(0) = 0, we obtain the
following stationary conditions

{1 + u(s)ls=x =0,
,u,(s)ls=x =0,

Solving this system of equations for u(s, x) yields u(s) = —1, and the following iteration

formula can be obtained

X

Ups1(X) = u, (x) — J {w'(s) + k2u(s) — N(u(s)) — Af(s,u(s))}ds,  (2.4)
0

In what follows, we will apply the VIM for linear and non-linear cases.

2.1 Linear case: Let g(u) = 0 and a = 1.

2.1.1. If we are taking 4 =10, k = 2 and the function f(x,u) is continuously, but not

differentiable, for instance

+1 i <1
—x + = ifx<-=
_ 2’ 2
f(xru)_ 1 ] >1

X 5 lfx_2

We calculate the first iterations from the Eq. (2.4)

u0=1,
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( ) 1
14+ x—5x°, x<§
- _ 2 _
5 9x + 5x°, xZZ
( 20 1
14+ x —7x% +—x3, x <=
_ 3 2
u(0) =1 34 20 1
o 2 4V 3 1
5 19x + 23x 3x, xZZ
( 28 20 1
14+x—7x%+—x3% ——x*, X <=
uz(x) = 1 g 3 2
3 o 77 g 25 20 1
\ 3 X 3% .

thus, in this way, the rest of the iterations can be obtained. When n — oo, the closed form

is
. ¥ N A
- N A — x <=
uExact(x) = ¢ A < 8 (25)
_E+Ex_ze—4x+_e—4x+2 x>1
8 2 8 4 : -2

which is the analytic solution for the case 2.1.1.

In Table 1 show the comparison of the numerical results applying the VIM (n = 15), the
numerical solution of (2.4) with the Trapezoidal rule (TRAP) (2.4) and the numerical solution
of (2.4) with the Simpson rule (SIMP) with the analytic solution (2.5) and HAM [11]. Twenty
points have been utilized in the Trapezoidal rule and the Simpson rule. It can be noticed that
the results obtained by the present method are compatible with the HAM [11]. Table 2 we
have included the maximum absolute error (MAE), ||-||,, the maximum relative error (MRE)
and the maximum residual error (MRR) obtained by the VIM with the analytic solution (2.5)
on the interval [0,1]. The estimated orders of convergence (EOC) for different values of the
constant k are given in Table 3. Fig. 1 illustrates both the analytic solution ug,,..(x) and our
approximation by VIM (n = 13) for A = 100 and k = 2 within the interval 0 < x < 1. For

k > 3, the VIM implementation requires approaches to the n > 20 if we want to reach

beyond the discontinuity (at x = %).
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Table 1. Numerical results for the case 2.1.1

x Uprace(X) VIM HAM [11] TRAP SIMP
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.1 1.038469959 1.038469959 1.038469959 1.038469959 1.038469959
0.2 0.981837156 0.981837156 0.981837156 0.981837156 0.981837156
0.3 0.861455064 0.861455064 0.861455064 0.861455064 0.861455064
0.4 0.698340546 0.698340546 0.698340546 0.698340546 0.698340546
0.5 0.506581627 0.506581627 0.506581623 0.506581627 0.506581627
0.6 0.383521848 0.383521856 0.383521796 0.383521856 0.383521856
0.7 0.383452400 0.383452485 0.383451937  0.383452481 0.383452481
0.8 0.465825836 0.465826473 0.465822862 0.465826434 0.465826436
0.9 0.603462390 0.603466035 0.603447544 0.603465771 0.603465783
1.0 0.778142920 0.778159723 0.778082740 0.778158317 0.778158381
Table 2. MAE, ||*|lz, MRE and MRR for the case 2.1.1

m MAE 1112 MRE MRR
8 4.117E-03 1.705E-03 7.565E-03 1.735E-00
9 3.849E-03 1.410E-03 5.442E-03 2.813E-02
10 2.940E-03 7.841E-04 3.778E-03 2.652E-02
11 1.448E-03 3.366E-04 1.861E-03 1.755E-02
12 5.735E-04 1.225E-04 7.371E-04 8.089E-03
13 1.964E-04 3.944E-05 2.524E-04 3.080E-03
14 6.017E-05 1.149E-05 7.733E-05 1.026E-03
15 1.680E-05 3.073E-06 2.159E-05 3.079E-04
Table 3. EOC for the case 2.1.1

k x=0.4 x=0.6

1 1.036659 1.043486

2 1.096530 1.053197

3 1.116673 1.187045
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( 0.2 04 06 08 1
X
Fig. 1. Continuous line:ug,qq:(x), 0: VIM, 1 = 100, k = 2

2.1.2. TakingA =10,k =1, and

few=ve-n={3 LIS

the unit step function at x = 1. We calculate the first iterations from the Eq. (2.4)

up(x) =1,
1—x, x<1
“1(")_{—9+9x, x>1
( 1 )
1—x+§x, x <1
uZ(x):< 9
_ _ N2
L 14 + 19x 2x, x=>1
( 1 1
1—x+—=-x%—=x3, x<1
_ 2 6
us(0) =3 47 19 . 3
k—?+24x—7x2+§x3, x =1
( 1 1 1
1—x+—=x%—=x3+—x* x<1
() = | 2X 76" T
s 198 77 o, 194 3, .
K_E-I_?x_ X +?x —§x, X =
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thus, in this way, the rest of the iterations can be obtained. When n — oo, the closed form
is

e’ %, x <1

10 —10et™* 4+e™*, x>1’
which is the analytic solution for the case 2.1.2.

Ugxace (X) = { (2.6)

In Table 4 show a comparison of the numerical results applying the VIM (n =9), the
numerical solution of (2.4) with the Trapezoidal rule (TRAP) and the numerical solution of
(2.4) with the Simpson rule (SIMP) with the analytic solution (2.6) and HAM [11]. Twenty
points have been utilized in the Trapezoidal rule and the Simpson rule. It can be noticed that
the results obtained by the present method are compatible with the HAM [11]. In Table 5 we
list the MAE, ||-||,, the MRE and the MRR obtained by the VIM with the analytic solution
(2.6) on the interval [0,2]. The EOC are 1.0793 at x = 0.9 and 1.0896 at x = 1.1.

In Fig. 2 illustrates both the analytic solution wug,,.:(x) and our approximation by VIM

(n = 8) within the interval 0 < x < 2.

In this case, the VIM is applicable until the value k = 2.

“Table 4. Numerical results for the case 2.1.2”

x Ugraer(X) VIM HAM [11] TRAP SIMP

0.0 1.000000000  1.000000000  1.000000000  1.000000000  1.000000000
0.2 0.818730753 0.818730753  0.818730753  0.818730753  0.818730753
04 0.670320046 0.670320046  0.670320046 0.670320046  0.670320046
0.6 0548811636 0.548811634 0.548811662 0.548811634  0.548811634
0.8 0449328964 0.449328936  0.449329306 0.449328938  0.449328938
1.0 0.367879441 0.367879188 0.367881944 0.367879214  0.367879213
12 2113886681 2.113885143  2.113899362 2.113885334  2.113885330
14 3.543396503 3.543389440 3.543446369  3.543390478  3.543390455
1.6 4713780157 4.713753757  4.713942852  4.713758264  4.713758164
1.8 5.672009247 5.671925111 5.672468038 5.671941556 5.671941191
2.0 6456540871 6.456305114 6.457688492  6.456357320  6.456356171
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“Table 5. MAE, ||-||2, MRE and MRR for the case 2.1.2”

m MAE 111l MRE MRR

4 1.267E-01 6.671E-02 1.963E-02 2.696E-01
5 5.654E-02 2.427E-02 8.757E-03 1.833E-01
6 1.845E-02 7.056E-03 2.858E-03 7.499E-02
7 4.953E-03 1.743E-03 7.672E-04 2.341E-02
8 1.147E-03 3.783E-04 1.777E-04 6.101E-03
9 2.357E-04 7.355E-05 3.651E-05 1.383E-03

0 02 04 06 08 1 12 14 16 18 2

Fig. 2. Continuous line: ugyqc: (x), 0: VIM

2.1.3. Lettingk=1,4A=1and f(x,u) = §(x — 1), the unit impulse function atx = 1. We
calculate the first iterations from the Eq. (2.4)

up(x) =1,

wu(x)=Ux-1)+1-x,

U () =2 —-x)U(x—-1)+1 —x+%x2,

()—(5 2 +12)U( D)+ 1—x+ox?— Ly
U3x—2 X Zx X X Zx 6x,
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8 5 1 1 1 1
uy(x) = (§—§x+x2 —8x3) Ulx—1)+ 1—x+§x2 —gx3 +ﬁx4,

thus, in this way, the rest of the iterations can be obtained. When n — oo, the closed form
IS

Ugxact(X) = U(x — De ™ +e77, (2.7)

which is the analytic solution of the case 2.1.3.

In Table 6 we list the MAE, ||-||,, the MRE and the MRR obtained by the VIM with the
analytic solution (2.7) on the interval [0,2].

The EOC are 1.0793 at x = 0.9 and 1.0907 at x = 1.1.

Fig. 3 illustrates both the analytic solution ug,4.:(x) and our approximation by VIM (n = 8)
within the interval 0 < x < 2.

Again, in this case, the VIM is applicable for the values k < 2.2.

“Table 6. MAE, ||*||2, MRE and MRR for the case 2.1.3”

m MAE 111l MRE MRR

4 1.634E-01 7.522E-02 3.248E-01 5.000E-01
5 6.154E-02 2.532E-02 1.223E-01 2.249E-01
6 1.900E-02 7.158E-03 3.777E-02 8.055E-02
7 5.000E-03 1.750E-03 9.936E-03 2.400E-02
8 1.150E-03 3.786E-04 2.286E-03 6.150E-03
9 2.357E-04 7.352E-05 4.685E-04 1.386E-03

199



‘ . . adl |
<323 dasly (oubll il ) Sl bl i il Ai)all duntas

¥ A Al . . Syl g Sl 52 30
S " el SN ] S (Sl ekl (§ it ki

( uildl dabl) 2020 Jodl yedlsS 17-16

1.2
14 i
0.8
0.6

0.4
0 02 04 06 08 1 12 14 16 18 2

X
Fig. 3. Continuous line: ug,q.:(x), 0: VIM

3.1.4. Nowwetakek =1, A =1 and

f(x,u)=5(x—%>+6(x—1)+6(x—%>,

the unit impulse function at x = % 1,%. We calculate the first iterations from the Eq. (2.4)

up(x) =1,
ul(x)=U(x—%)+U(x—1)+U(x—;)+1—x,
uz(x)z(%—x)U(x—%)+(2—x)U(x—1)+<—;——x)U<x—;)+1—x+%x2,

uz(x) = (£—§x+lx2>U(x—l) + (E—2x+lx2) U(x—1)

8 2 2 2 2 2
+<29 5 +1 2)U( 3)+1 +1 5 1 3
3 2x 2x X > X 2x 6x,

thus, in this way, the rest of the iterations can be obtained. When n — oo, the closed form
is

1\ 1_ 3\ 3_
Upyaer(X) = U (x — 5) e2 *+U(x—1e ™ +U (x - E) ez ¥ +e7%, (2.8)
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which is the analytic solution for the case 2.1.4. The EOC for both sides of the discontinuity
are given in Table 7. In Figs. 4 and 5 illustrate both the analytic solution ug,,.:(x) and our
approximation by VIM (n = 14). The validity of the approximation VIM (n = 14) only till
the second discontinuity can be easily noticed in Fig. 5.

Table 7. EOC for the case 2.1.4

x=0.4 x=0.6 x=0.9 x=1.1 x=1.4 x=1.6
1.0352 1.0424 1.0627 1.0802 1.0846 1.0420
2_
151
¥
1*\
0.5
h i 5 3 p

Fig. 4. Continuous line: ugyeet (x), 0:VIM, k=1, 1 =1
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o™

0 02 04 06 08 1 12 14 1%
X

Fig. 5. Continuous line: ugyee: (%), 0:VIM, k =2, 1 =1
2.2 Non-linear case: Let g(u) = u? and o = 1.
2.2.1. Ifwearetakingk =1,A=1and

fo=usn <[ 5]

the unit step function at x = 1. We calculate the first iterations from the Eq. (2.4)

up(x) =1,
1 x<1
ul(x)={x x>1
1, x<1
=11 1 1
u2(%) g+x—§x2+§x3, x>1
1, x<1
={239 31 1 4 11 11 1 1
(%) ——+—x—x? =P ——xt+ xS ——x+—x7, x>1

1260 36 3 9 36 60 18 63

thus, in this way, the rest of the iterations can be obtained.

Fig. 6 illustrates both the numeric solution uy(x) with a very small error and our

approximation by VIM (n =9) for 0 < x < 2.
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For all values of 4, the VIM is applicable in this case, when k < 1.5.

0 02 04 06 08 1 12 14 16 18 2
X
Fig. 6. Continuous line: uy(x), o: VIM

2.2.2. Takingk =1,A=1and f(x,u) =9 (x — %) the unit impulse function at x = % We

calculate the first iterations from the Eq. (2.4)
uO(X) =1,

uy(x) =1+ U(X——Zl-),

1
u,(x) =1+ 2xU (x — E)'

7 4 1
uz;(x) =1+ (E+X2 +§X3)U(X—§),

thus, in this way, the rest of the iterations can be obtained.
In Fig. 7 we show our approximations by VIM (n =8)and VIM (n =9) for0 < x < 1.

For any values of 4, the VIM is applicable in this case, when k < 2.3.
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1

0 02 04 06 08 1
X
Fig. 7. Continuous line: VIM (n =8) o0:VIM (n =9)
2.2.3. Finally,wetakek =1, 1 =1 and

flx,u) = (x——)+6(x——)

the unit impulse function at x = =,=. We calculate the first iterations from the Eq. (2.4)

N

ux) =1,

u;(x) = 1+U(X—%)+U<X—%),

uz(x) = 1+(%"'ZX)U(X—E)+(—1+4X)U<x—%)

4
()—1+(2+3 +2 +4 >U( 1>+(2 22+32 3)U< 1)
U3X— 3 4_X X 3X X 4 3 X X 3X X 2

thus, in this way, the rest of the iterations can be obtained.
Fig. 8 represents our approximations by VIM (n = 8) and VIM (n = 9) for 0 < x < 0.6.
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5_
4.
Y
3_
2_
1 T T - T T T 1
0 01 02 03 04 05 06
X
Fig. 8. Continuous line: VIM (n =8) o0:VIM (n =9)
Conclusions

In this paper, the VIM has been successfully applied to solve I\VVPs of first order with
discontinuities. The convergence of the method does not affect by the size of the jump (given
by 1) on both sides of the discontinuity. With k = 3, the application by the VIM does not
converge even with small values of the parameter such as A = 1073.

The proposed scheme for VIM was used straight without the need for transformation
equations or restricted assumptions. The VIM approach was tested by using the method to
obtain approximate analytic solutions of the linear case. The results obtained by the current
method VIM are convenient with ADM and HAM. The results obtained in all cases explain

the accuracy and efficacy of this method.
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